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Abstract-The purpose of the present note is to remove the restriction of linearity of deformation analysis
from the vectorial kinetostatics relations of shell theory (1.2]. The resulting nonlinear vector compatibility
equations have a prototype in the moment stress elasticity(3].

I. INTRODUCTION
Local form of a shelf reference surface is described with four vectors: two curvature vectors
(Darboux) and two derivatives of the position vector with respect to surface coordinates. This
approach assures a short-cut to the analysis of the lOcal geometry of a surface as well as to the
derivation formulas. It was in fact suggested in Love's book.

Achange of the four vector parameters, caused by deformation, implies four parameters of
strain. connected by two nonlinear vector compatibility equations.

2. GEOMETRY OF A SURFACE

Consider a surface described by the equation r =r(~.. €2)' The derivatives rJ with respect
to the coordinates 6 determine the unit tangent vectors tj (Fig. I) of the 6-lines, i.e. rj =ajtj.
The angle X = x(~j) between the ~rlines may be oblique and variable. During a deformation of
the surface, which may be arbitrary, each particle retains its curvilinear coordinates €j. The
characteristics of the deformed surface will be denoted by asterisk (r*, t', X*, etc.). The un
deformed state is to be considered as a particular case of the deformed one.

The curvature of the surface will be measured by the rotation of a tangent plane sliding
along the surface. The position of the plane is identified by a (unit) vector normal to the surface
D* =t1 x t!/sin X*. To measure its rotation around D* the plane must be connected with an
element of the surface. (Because of the shear deformation it cannot be more than one linear
element at a point of the surface.) We choose for this an element t*ds, t* =(tT +I!)/(ltT +I!l
bisecting the angle x* between the coordinate lines (Fig. 1).

We introduce two vector parameters kT, k~ of surface curvature, defining kTd€1 +k!d€2 as
an angle (d~) between tangent planes at points M(€h €2) and MMI +d€h €2 + d€2)'

The geometric meaning of the curvature vectors kT, k! becomes more lucid with their
component representation in the following two presentations identical to each other before
deformation:

k'" D* X tj D* k'" D* X t~ D*
..L = +- or -L = ::....:.:.:L +- (i i-I 2)at R~ R~ at Rij Rh ,-,.

Fig. I.
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The unit vectors ti are defined as indicating the position attained by the vectors tj, which when
rotating during the course of the shell deformation are rigidly connected to the tangent plane.
i.e. to the vectors n* and t*. The difference between t; and t7 is determined solely by the shear
angle "/ = X - X*. The vectors t; remain orthogonal, when the coordinate lines ~j are orthogonal
before the deformation. (The use of such an orthogonal auxiliary basis was suggested by
Simmonds and Danielson[4]).

The expressions of t; through tj are readily written out; and are for small strain (/,,/1 ~ 1) and
X = (1T/2):

(2)

The components of the curvature vectors k' as introduced by eqns (1) are easily recognized
to be the normal section curvatures (l/R~), the twist (1/Rf2' 1/Rr.> and the in-plane curvatures
of the ~-lines (1/R~). The curvature parameters k7 render derivation formulas for all the basis
vectors introduced. Considering an auxiliary unit vector v*(tj) directed at any point M(~j) at the
same angles to n*Uj) and t*(~j) the definition of kj means thatkj d~j is the angle between v*(~j)and

the vector v(~j +d~j) in the adjacent point M(~j +d~).

This amounts to

Hence the expressions for the derivatives of a unit vector v* or its particular cases n*. t* are:

V~j =kj x v*, n~j =kj x n* and t~j =k1 x t*. (3)

The position of the vectors t; or t1 changes inside the tangent plane together with the angles
(-1)jn*X(~j)/2 or (-1)jD*X*(~j)/2 between t* and ti or f; (Fig. 1). Taking account of this the
derivation formulas for t; and t1 contain, compared to (3), additional terms:

(4)

The formulas (3) lead to a compatibility equation between the two vector parameters kj.
Applying (3) to the equation V~21 = V~12 and using the vector triple product expansion formula
results in

* k* * k* - 0k•.2- 2•• +k. x 2 - • (5)

This is equivalent to the three scalar Gauss-Codazzi equations.
With the derivation formulas (4) the equation r.12 = r.21 renders the relation R \2 = R2\ and the

well-known expressions of geodetic curvatures tlRiJ with Lame's parameters aj.
The description of local geometry is completed by formulas for the curvature parameters kt

for any coordinate system ~r defined by its angle a with the original system ~i' This includes
formulas for Rij. their extreme values, invariants, etc.

These formulas follow directly from kN~;o = kid~1 + k2d~2, which is just another way to
write the relation d... = ....ld~1 + 4J.2d~2'

3. STRAIN AND COMPATIBILITY

It is natural to describe the deformation of the surface with parameters (It;, Ei) reflecting the
change of the local geometry characteristics from k;, r.; to k1, r~j in the simplest way:

(6)

Additionally we require the strain parameters Itj, Ei to be equal to zero at any point, at which
the surface is not deformed. This implies that the parameters kiR' (r.;)R at such a point are equal
to k1, r~ and define the initial local shape of the surface-the same as kj, r.j. But the kiR, (r.i)R



On vector description of arbitr:lry deform'llion of shells 303

must take into account the rotation of a locality of the surface (caused by deformation of its
other parts). Thus the components of the kiR. (r,iR) in the rotated basis n*, tt are equal to the
components of the initial form parameters ki, r,i in the initial basis n. tj:

k n* xt'· n*
-!!=::......:.:..:l+_ (r')R=o.t'..
0; R;j Ri)'" I I

(7)

We consider the deformation of the surface at an arbitrary point M. Without loss of
generality the analysis of strain may be simplified by taking the tangent plane at the point M as
a reference for the displacement. This makes the rotated basis at the point M identical to the
initial basis: t~M) =tj(M), n*(M) =n(M). Hence the rotated local shape parameters, as defined
in (7), remain at M equal to the initial surface shape parameters

(r,;)R = r,;(M). (8)

Thus the application of the derivation formulas (3), (4) to the expressions (7) results for the
chosen point M in

klRJ =ki,j +Ojl(j x kj, (r.j)R,j =r,jj +ojl(j x r.j. (9)

Now we introduce the expressions (6) into the eqn (5) and into r~2 =r~I' Taking into account
the derivation formulas (9), the relations (8) and, finally, using eqns (5) for the undeformed state
and r.12 = r.21 yields two vector compatibility equations

(a IlClb - (021t2).1 +01021t1 X 1t2 =0,

(alElb - (02E2).1 - Olt; X 021t2 +02t2 X 0lltl =O. (10)

With ajt: (not aitj, as at the point M) the eqns (10) are written for any arbitrarily chosen
reference system for displacements. Obviously, a change of the reference system for the
displacement conforms to a rigid body displacement of the entire surface. This cannot influence
in any way the relation between the strain parameters.

The vector parameters of extension-shear and of bending-twisting are most conveniently
expressed in the rotated basis:

Itj =n* x tiKjj +n* Itj). (11)

The geometric meaning of the scalar parameters introduced in (11) follows from the
relations (6).

The parameters of curvature and twist of the deformed shell, appearing in the scalar
compatibility equations in the components of the derivatives, are determined by the expressions
(1), (6), (11) as

1 1
R~ =R-:-+Kin (;=1,2; n=I,2,3).

.ft .n
(12)

The actual curvatures l/Rr,. of the deformed surface are somewhat different, but can also
be determined with the relations presented.

4. CONCLUDING REMARKS

Naturally the above analysis renders also the metric and the second fundamental tensor
components ail> biJo The definitions a: =r' . r', b: =n* . r'j together with the formulas (6),
(7), (11) and n* . t; =0 yield

b~j = Oin* . [k' x (ti+ Ej)]. (13)
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The components Gij, hij for the undeformed surface are determined by formulas (13) with

The geometric meaning of the parameters fi' Rij is illustrated by the expressions (13) written for
the simplest (and most important) case of small strain (ti +fj == ti) and for orthogonal coordinates
~j(X = 1'/2);

(14)

The six scalar compatibility equations resulting from the equations (10) coincide with the
nonlinear equations of E. Reissner's work[l] if the decompositions (II) are supplemented with
transverse shear terms E;3n* and the vectors t; are left in arbitrary position to t*.

The eqns (5) extend the vector Gauss-Codazzi equations [5] to oblique coordinates ~j and to
arbitrarily deformed surfaces.

The vector compatibility eqns (10) are reduced to the known linear ones[I-3], when the
nonlinear term aja21C1 x 1C2 is dropped, the shape of the surface is assumed to be identical with the
initial shape (n* =n, t, =tj ) and the coordinates ~j are orthogonal.
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